Satellite Image Classification Based on Fuzzy with Cellular Automata
نویسندگان
چکیده
منابع مشابه
Satellite Image Classification Based on Fuzzy with Cellular Automata
Satellite image classification is a significant technique used in remote sensing for the computerized study and pattern recognition of satellite information, which make possible the routine explanation of a huge quantity of information. Nowadays cellular automata are implemented for simulation of satellite images and also cellular automata relates to categorization in satellite image is used si...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملImage Steganography Based on Cellular Automata
In this paper, a new approach of image steganography using twodimensional Cellular Automata (2D-CA) has been proposed for a confidential message. We convert the message in such a way that message length becomes 1024 bits after padding some bits. If message size is more than 1024 bits, we subdivide the message of length 1024 bits using padding technique. Convert original message by XORing with s...
متن کاملModified CLPSO-based fuzzy classification System: Color Image Segmentation
Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Electronics and Communication Engineering
سال: 2015
ISSN: 2348-8549
DOI: 10.14445/23488549/ijece-v2i3p126